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Abstract

This paper considers two separate, but telated problems involving
the design of rectangular layouts of m activities. In each of the
problems, costs are incurred which are non-decreasing in distance
between activities. The distance between two activities is either the
worst-case rectilinear distance, or the worst-case Tchebyshev distance.
Minisum and minimax layout problems are then considered and solution

techniques are provided.
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Introduction and Definitions

This paper considers two separate, but related problems involving the design
of rectangular layouts of m activities. In each of the problems, costs are in-
curred which are nondecreasing in either the rectilinear distance or crame travel
time between activities, and it is desired to find rectangular layouts which
minimize either a maximum or a total cost. The problems are idealized, and the so-
lutions obtained should thus perhaps best be viewed as design aids.

In what follows we first define the rectangular layouts of interest. Then
we state the two problems, and briefly discuss relevant literature. Next we
present algorithms which solve the problems, illustrate the use of the algorithms,
and identify some insights the algorithms provide. The last part of the paper
consists of the analysis needed to justify the algorithms.

In order to facilitate the problem statements and analysis we introduce
some definitions. Given m activities, with associated positive numbers
Ay -.e5 A, we define a layout to be a collection $ = {S;, ..., S } such
that Si, the planar region taken up by activity i, is a compact planar set
of area A, for i e M = {1, ..., m}), m> 2, and such that S, and S do not

3
overlap for 1 # j. An ordered rectangular layout is a layout S for which

there is an ordering of 1, ..., m, say [1], ..., [m] (called the ordering i

for S) such thatu{s[i] :1<41<3)} is a rectangle: of

area By, | ) {A[il t1<4<3j)forl <j <m A doubly rectangular (DR)

layout is an ordered rectangﬁlar layout S for which Si is the union of a

finite collection of rectangles, each of which has the same orientation with

respect to the axes, for 1 ¢ M. Figures 1 - 6 111u§grate DR layouts; f

Fig. 1 gives some indication of how general such layouts can be. We denote

the collection of all DR layouts by cm. A concentric square (CS) layout is
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a DR layout made up of concentric squares having the ordering [1], ..., [m]

from the center outwards. Note that a CS layout is completely defined by its

ordering. Fig. 2 illustrates a CS layout.

We shall restrict our analysis to DR layouts, and establish that certain
cs iayouts are optimal for the problems we consider. In view of the fact that
standard construction practices generally dictate that buildings and rooms
have rectangular shapes, and in view of the fact that plots of land are usually
rectangular, it seems quite reasonable to consider DR layouts.

In order to develop objective functions for the problems of interest we
now consider rectilinear and Tchebyshev distances. Given any two points in
the plane, Xi = (xl, yl) and X, = (xz, yz), we denote the Tchebyshev distance

between Xl and x2 by t(xl, x2), where
t(xl, Xz) = max[|x1 - x2|, |y1 - y2|] .

For 1 = 1, 2 let Xi denote the point obtained by rotating X, 45 degrees with

i
respect to the axes. We denote the rectilinear distance between Xi = (xi, yi)

and xi = (xé, yé) by r(X!, xé), where

€ 1) = Ixf - )+ Iy] - vyl
It is known that the two distances are related as follows:

r(X], X)) = /2 t(X, X,). (1)
That is, the two distances are the same under a 45 degree rotation and change
of scale of VY 2 . The relationship (1) is given in [1 ], and has previously

proven useful in the study of rectilinear location problems [2 ], [3], as
well as rectilinear layout problems [5 ].

Due to the prevailing use of rectilinear aisle (and street) structures,
most of the layout problems of interest here involve rectilinear distances.

However, for analytical purposes our approach will be to study a simpler

2
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Figure 1. Example of Doubly Rectangular Layout : S[ilsg Sj[i]
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Figure 2. Example Concentric Square Layout for m = 6
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layout problem in which the distances are Tchebyshev. Thus, if the original

problem is one in which rectilinear distances apply, we rotate any layout

under study by 45 degrees relative to the axes and using relation (1), multiply
each Tchebyshev distance by ¥ 2 to obtain the corresponding rectilinear
distance. A more detailed discussion of the relation between rectilinear

and Tshebyshev distance is given in [5]. We emphasize the fact that all the
figures we display are for problems involving Tchebyshev distance, unless noted
otherwise. The displayed layouts must be rotated 45 degrees with respect to

the axes to obtain the layouts for the equivalent rectilinear distance problem.

We remark here that there is also at least one caée where the Tchebyshev
distance is of direct interest. Consider the case where a crane can move
gimultaneously and independently in two orthogonal directions, which are
parallel to the two axes. Suppose further that we ignore acceleration and
deceleration effects, and choose a measurement scale so that the two movement
velécities are the same, v, with v = 1, If the crane is at the point
xl = (xl, yl) and moves to the point X2 = (xz, yz), then the time for the
Erane to move to any point lying on the line x = x, is tl = |x1 - x2|/v,
while the time for the crane to move to any point lying on the line y = ¥y
is t, = |y1 - y2|/v. Because the crane is at X, if and only if its location
is both on the line x = Xy and the line y = Yps the time for it to move to Xz
is the greater of tl and tz, max(tl, tz), which is just the equation (1) when
v = 1., Thus the layout problems we consider may also be interpreted as
problems for which all movement between activities is by crane, and the ob-
jective functions which we shall consider are nondecreasing functions of crane

travel time.




Given any layout S in c, ve denote by Di(S) the maximum distance
between any point in Sy and any point in u {Sj :jeM, j#4i}. That is, if

the layout problem involves Tchebyshev distances,

where
= 2 : 3 i .
DT, (S) max[t(xl, X)) 1 X €8, X, € {sj jeM, j#1}]
If the layout problem involves rectilinear distances, we rotate S by 45 de-
grees to obtain say, S', and we have
Di(S) =v 2 DTi(S'),

due to (1).

As discussed in [4 ], Di(S) is a conservative overestimate, or worst-~case
measure, of the distance between activity i and the other activities. To
illustrate Di(S), with reference to Fig. 2, if S is a concentric square

layout, with order [1], [2], ..., [m], and we define

d = (/B +v B )/2

[i] (1]

(where B = Al + e 4 Am)’ it is easy to verify that when Tchebyshev distances.

apply, Di(S) = d[i]’ 1<1i<ml, Dm(S) = Dm- (s).

1

Problem Statements and Related Literature

For every activity i in M, we suppose we are given a nondecreasing function

f1 which is defined on the nonnegative reals. Given a layout S in Cm we define

Fi(S) e [Di(S)]. 1eN,

F (S) = max[Fi(S) : 1 e M),

G (8) = ] [F(S) :1¢€M).
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It should be understood that the functions fi used in defining F(S) may differ
from the ones used in defining G(S): they must, howev;t, have the same pro-
perties of being defined on the nonnegative reals and being nondecreasing.
In either case, for a layout S in Cm, Fi(S) is a cost incurred for activity i
which is nondecreasing in the distance Di(s)' F(S) is then a maximum cast,
while G(S) is a total cost. The minimax layout problem is then to find a lay-
out to minimize F(S), while the "minisum" problem is iz find a layout to mini-
mize G(S).

A rationale for the objective funcétions F and G is discussed in [4 ]
in some detail. Briefly, instead of being concerned about distances between
every pair of activities, we are concerned about the greatest distance for
each activity, and incur costs which are proportional to this greatest distance.
A similar rationale is discussed in [5 ]. We comment that all of the litera-
ture relevant to the two problems we consider is discussed in [4 ] and [5 ],
and so will not be discussed here. The problems considered in [4 ] are
analogs of the problems considered here when layouts must be made on the line,
e.g., an aisle. The problems considered in [ 5 ] are closely related to the
minimax problem considered here when the functions fi are defined by
fi(y) =y, 1 <1 <m. Thus the contributions of this paper consist of ex-
tending the results of [4] to the analogous planar case, and generalizing the
objective functions of the planar laycut problems considered in [5] for
the special case where layouts are doubly rectangular.

So as to make clear the class of layouts over which we shall optimize,
when S is a layout in Cm such that each edge in S is parallel to one axis and
perpendicular to the other, we call S ar aligned doubly rectangular (ADR)

layout. A DR layout which is not aligned we call an unaligned doubly rec-

tangular (UDR) layout. Fig. 6 illustrates a UDR layout. Hence a DR layout

i R s i s -
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is either an ADR or a UDR layout. We shall be minimizing over all DR layouts,
both ADR and UDR. When an ADR layout is a CS layout we call it an aligned

concentric square (ACS) layout.

Given layouts S* and S in Cm for which Di(S*) < Di(S) for 1 € M, we say
that S* dominates S. We shall subsequently establish that any layout S in
Cul is dominated by an ACS layout S* in Cm. Hence, due to the nondecreasing
property of the minimax and minisuw objective functions in distance, it will
suffice to consider only ACS layouts in order to solve the two problems of
interest.

Solving the Minimax Problem

In order to solve the minimax problem we shall assume that activities

can be numbered so that f:l > fi+1’ that is, fi(y) > fi+l(y

1 <i<ml. We can always satisfy this assumption when the f  are increasing

) for all y > 0,

linear functions with the property that fi(O) = £ (0) for all i # j, e.g.,

]
fi(y) WYY > 0, 1 € M; for this case we number activities so that

w 1 <i< m1l. Also, we denote by S(p) the ACS layout such that

1 2410
activity p surrounds all other activities and such that, otherwise, activities
surround one another in the order of increasing index number from the center
square outward. Fig. 2 illustrates S(3) if we suppose [1] = 1, [2] = 2,

[3] = 4, [4] =5, [5] =6, and [6] = 3.

Minimax Algorithm

(1) Number activities so that £, 21,

= Am" otherwise define o0 = m-]1.

> eee > f
s e

(2) Define ¢ =m if Am—l

(3) Construct the set &

{p:lip_<_m-2,Am<Ap}u {od

(4) Compute F(S(p)) for every p € 0’ .

o




(5) Any layout S(p*) for which
P(S(p%) = minlF(S(p)) : p ¢ O

is a minimax layout.

We remark, given layouts S(p) and S(q) with 1 < q < p < m, that
Di(s(p)) = Di(S(q)) for 1 < i < q-1. This fact can be useful in computing
either of the terms F(S(p)) or F(S(q)) once the other term is computed.

To illustrate the minimax algorithm, consider an example where
Tchebyshev distances apply for which m = 6, fi(y) =w.¥, 1<1ic<6,

(wl, Wos Was W5 Vo, w6) = (10, 8, 6, 5, 3, 2), (Al, Ay, A, A, A, A6) =

(33, 2, 4, 5, 8, 10). Clearly fl > £ Since A_ < A_,

2 3 4 5 6° 5
g =6. C,/ = {1, 6} since A, 1is the only A, which is greater than A..

2-80 > f > st
We list the Fi(S(p)) for p =1, 6 in Table 1. As can be seen from the table,

p* = 1, so S(1) is a minimax layout. Fig. 2 illustrates S(1) on taking

[1] = 1+1 for 1 <1 <5 and [6] = 1. To solve the analogous minimax problem
where rectilinear distances apply, since each fi is linear, it is easy to

show that a 45 degree rotation of S(1) is an optimal layout, but that the

optimal objective function value is v 2 times F(S(l)) as given in Table 1.

We emphasize, it is because the functions fl, Khelesy f6 are linear in this
example that the rotated layout for the Tchebyshev problem solves the rectilinear
problem. In general, when the functions fl, s eey fm are nonlinear it is nec-
essary to use the expression Di(s(p)) = /_5—_'DT1(S(p)) for computing F(S(p)),

p € (9/.

We now identify some insights obtainable from the minimax algorithm.
Consider first the case for which all the Ai are the same: in this case one
can verify that an ACS layout with order 1, 2, ..., m is a minimax layout.
Recalling that f

> 8, 3 seo z_fm, if we consider fi to be a measure of the

1

2




TABLE 1: Illustration of Minimax Algorithm

_1_ F (8(1)) F (5(6))
1 10(/29 + /62 )/2% 10(V 33 + V62 ) /2%
2 8(/ 2 +7/62)/2 8(/ 35 +/62)/2
i 3 6(/ 6 +V62)/2 6(/ 39 +/62)/2
] 4 S5(/IT + /62 )/2 5(/4 + 7 62)/2
, 5 (/19 +/62)/2 3(/52 + /62)/2
< : 6 2(/29 +/62)/2 2(/52 +/62)/2

* F(S(1)) = F,(S(1)
] ** B(S(6)) = F,(S(6))

66.2959

68.0929

s e
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relative use of activity i, then the minimax layout obtained has the property
that the most used activity is in the middle, surrounded by the second most
used activity, etc. Alternatively, consider the case where the fi gre
identical: in this case, with Am = max(A1 =1 <i < ml), one can verify
that any ACS layout with activity m surrounding all the other activities is
a minimax layout. Motivation for such a layout being minimax can be obtained
by recognizing that if activity m did not surround the others, then because
activity m has the greatest area the distances to activities surrounding
activity m would be increased over and above their value in the minimax laycut.
More generally, when neither the fi nor the Ai are identical, the mini-
max algorithm demonstrates the fact that we must consider both the relative
values of the fi’ and the relative values of the Ai’ in order to find
a minimax layout.

Solving the Minisum Problem

The minisum problem appears to be a good deal more difficult than the mini-
max problem. The helpful feature of the minimax problem, in terms of the
analysis, is that in seeking a minimax layout from among the ACS layouts most
of the effort involves determining which activity should be "outside": the
relative positions of other "inside'" activities may have little effect on the
objective function value. However, for the minisum problem, given an ACS
layout S with order [1], ..., [m], every term F[i](S) has an effect upon the
objective function value. Thus the cost depends upon the order, and there are
m! possible different orders. Therefore, we need to impose more structﬁre

upon the minisum problem in order to solve it.

Given the functions fl, oy fm we define the functions hl’ iy hm by
ha(y) = £.(y), v > 0. (28)

10
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We assume that each of the functions hl, ...; hm is nondecreasing. When each
of the functions fl’ e fm is differentiable, with fi(y) denoting the deri-
vative of fi evaluated at y, this nondecreasing assumption is equivalent to

foly) 2 £1..03), 720, 14120l (34)

£1(y) > 0. (38)

Minisum Algorithm

Suppose the activities can be numbered so that h, is nondecreasing for

i

1 <i<m, and so that A} < Ay < *++ < A . Construct the ACS layout S* in
Cm with ordering 1, 2, ..., m. S* solves the minisum problem.

To illustrate the use of the algorithm, suppose all areas are the same,
and that fi(y) MY, >0, 1 € M. Since fi(y) a for y > 0, if we number

the items so that W, > 1l <i<ml, since W > 0 the conditions (3), and

Yi+41°
thus the conditions (2), are satisfied. The resultant ACS layout has the
intuitively appealing property that activity 1, which has the largest "weight"
(wL) is placed in the middle, activity 2, with the second largest weight (w2)

surrounds activity 1, etc.

As a second illustration, if we suppose the functions fl’ suetey fm to
be identical, then the algorithm constructs an ACS layout for which activity 1,
with smallest area (Al), is in the middle, activity 2, with second smallest
area (AZ), surrounds activity 1, etc.

Since we can always number activities so that A

< A, < +s+ <A, the
- - -

1 2
only way the conditions the algorithm requires cannot be met is when some
function h1 is not nondecreasing: in such a case the minisum proBlem remains
effectively unsolved. However, a result we establish in the analysis (Property 6)

may still be useful in reducing the number of ACS layouts which must be con-

sidered in order to solve the problem.

11
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Dominance Analysis

In this section we establish that any layout S in Cm is dominated by an
ACS layout S* in Cm.

Throughout this section, we assume the distance measure of the original
problem is Tchebyshev. This provides no loss of generality since if the
distance measure is rectilinear, it is clear that layout S* dominates layout
S in rectilinear distance measure if and only if S* dominates S (after each is
rotated 45 degrees) in Tchebyshev distance measure.

The dominance proof is by induction, and requires that the dominance results
be true for both m = 2 and m = 3 in order to establish the general result. Most
of the analysis deals with the case m = 3: once this case is established the

general result follows readily.

Throughout this section in order to simplify the notation we assume, given
any S ¢ Cm’ that activities are numbered so that the ordering for S is
1, 2, ..., m; that is, [i] = i for 1 € M. Since activities may be numbered

arbitrarily our assumption involves no loss of generality.

We use the term distinct layout type to mean a DR layout which cannot be
obtained from another DR layout by means of a translation and/or rotation.

For any layout S = {Sl, 82} in C,, either S

2 2 "surrounds" S;» (in the sense
of Figure 3a) or s1 and 52 are adjacent rectangles. Hence we conclude that
Fig. 3 illustrates all the distinct layout types for m = 2. Likewise, for
m = 3, on letting T2 = S1 u S2 (which must be a rectangle by the ordering
convention) we conclude that all distinct layout types can be obtained using
layouts as illustrated in Fig. 4, and the results appear as illustrated in

Fig. 5. Thus for m = 3 the analysis may be restricted to the types of lay-

outs shown in Fig. 5. For convenience, we refer to the layout types illustrated

12
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in Fig. 5 as Types (a), (b), (c), (d), and (e). The Di(S) expressions in

Fig. 5 are valid when the corresponding layout is aligned; the B and Bi
expressions are valid regardless of orientation to the axes.
For an ACS layout S* in C3 with ordering 1, 2, 3, it is easy to verify
that D (S*) = (/B, +V B )/2 for 1 = 1, 2, and D,(S*) = D,(s*). Thus in
order to establish dominance of ACS layouts for m = 3 it is enough to show
for any S in C,, that D (S) > (/’B_l'+ £ 12, D,(S) > (-"ﬁ;—+ /B )/2 < Dy(s).

The following remark will be useful in the analysis.

Remark. Given positive numbers Bi’ B, u, v, and nonnegative numbers ag, bi'
¢y di’ such that
(ai+bi—u) (ci+di-v)=Bi (4)
uv =B (5)
it is true that
ai+bi+ci+diz_2/Bi+2/B, (6)
and
max(ai, bi’ s di) > (v Bi + v B )/2. (7)

Proof. By the isoperimetric theorem for rectangles, given any positive numbers

X, ¥, and a for which xy = a, it is true that x + y 3_2J a . Applying this

theorem to (4) and (5) we obtain (ai + b, - u) + (c1 + d1 -v) 3_2] B1 and

i
u+v>2/B ,which give (6) when added. Now if (7) is false, then each of

the terms ag, bi’ c,, and d, is strictly less than (v Bi +/ B )/2, and so

i i
a, + bi +ec + di < 4[ (Y B, + /B )/2] = 2V B, + 2V B , which contradicts (6).
Thus (7) is not false, and the claim is established.

In order to establish dominance of ACS layouts for m = 3, we consider

the Type (a) layout of Fig. 5 for both the aligned and unaligned cases. For

the remaining layout types of Fig. 5, we consider only the aligned cases.
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b)

c)
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4
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I Y
C,=v fi S; ‘;;E
1 S
7 n———-d'—44
Q‘——u

N 1
5. S; rgfa“‘a
~— q, =
| S O—— q‘—ﬁ

Lo e

B=uv
Bi-(ai+bi—u)(ci+di-v), i=1,2

Di(S)=max(a ’di)’ i=1,2

1030y
D3(S)'D2(S)

B=uv

Bls(az+b1-u) (c2+d2-v)
Bz=(az+b2-u)(c2+d2-v)
Dl(S)'NGX(aZ $b1)c2 ’dz)

D2(S)=D3(S)-max(az,bz,cz,dz)

B=uv
Bl-(a1+b2-u)(c2+d2-v).
B2=(32+b2-u)(c2+d2-v)
Dl(S)=max(algb2,c2,d2)

DZ(S)=D3(S)-max(az,bz,cz,dz)

B=uv

Bi-(ai+bi-u)(c1+d1-v), i=1,2

Di(S)-max(ai,b di)’ i=1,2

1°%1°
D3(S)-D2(S)

B=uv
Bl-(az—x2+b2-u)(c2+d2—v)
82-(52+b2~u)(c2+d2-v)
Dl(S)-maxfaz-xz,bz;cz,dz)
DZ(S)-max(az,bz—xl,cz,dz)

D3(S)-e2-max(a2,b2,cz,dz)

Figure 5 - Distinct DR Layouts for m=3
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! The analysis for the unaligned cases for types (b) - (e) is basically similar
to the unaligned case for the Type (a) layout, but differs in many small
details, and is tedious. We refer the reader to [6 ] for the complete analysis.

b d

i i it |
as defined by the figure it is easy to see that Di(s) = max(ai, bi’ Cys di)’

If the type (a) layout is aligned, then with the dimensions a

i =1, 2, and that D3(S) = DZ(S)' Further, the dimensions satisfy (4) and
(5) of the Remark, and so we conclude from (7) that S is dominated by an ACS
layout. Now suppose the layout in question, say S', is unaligned, and makes
an angle with the y axis of 6, as illustrated in Fig. 6. 1In this figure the
perimeter of the innermost rectangle represents the perimeter of either S1 or
Sz, énd it can be seen that Di(S') = max(ai’ bi, ci, di), i=1, 2, (and

D3(S') = DZ(S')) where

ai = a, cos 6 + ¢y sin 6
bi = bi cos 6 + di sin 6
ci = b1 sin 0 + c; cos 6
di =a, sin 0 + d1 cos 6

Further, the dimensions of the figure satisfy (4) and (5) of the Remark, and so
(7) is true. Now suppose

Di(S') = max(ai, hi, ci, di) < (v Bi + v B )/2 . (8)
Then

ai+bi+ci+di<4[(v’ni +/ B )/2]-2-’13i +2/ B

and, using the equations for ai, Ve di and simplifying thus gives

(ai + bi + ey + di) (sin 0 + cos 8) < 2V Bi +2/ B 5 9)
Now since 0 < 6 < 90°, sin2 0 + cos2 © = 1 implies 1 < sin 6 + cos 6, and
so

(ai + bi +c, + di)l :_(a1 + b1 +c, + di) (sin 6 + cos 0). (10)

i i

16
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Figure 6. Example of Type a) UDR Layout
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contradicts (7). Thus (8) is impossible, and so, for Type (a) layouts,

Combining (9) and (10) gives 8, ¥ hi b, +d < 2v B, + 2V B, which

D,(s') > (/B + Y/ B )/2 fori=1, 2. Since D,(5') = D,(8'), the dominance
result is established for Type (a) layouts.

Now for Dl(s) for aligned layout Types (b) through (e) one can readily
verify using the appropriate dimensions on the figures and the expressions
for Dl(S) and Bl, that the analysis is identical to that of Dl(S) for the

aligned case of Type (a), and so Dl(s) > (Y B1 + v B )/2.

20 S0 d)) =

D3(S), with (a2 + b2 -u) (c2 + d2 ~v) =B, and uv = B, Thus we can employ

For layout Types (b), (c), and (d), we note that DZ(S) = max(az, b
2

the Remark to conclude that D,(S) = D,(S) 3_(/’52"+ /B )2,

Finally consider the Type (e) layout. We define e, = max(a?, bz, Cys dz),
and observe D3(S) =e,. Further, we may assume DZ(S) z_Dl(S) (for otherwise
we could renumber activities 1 and 2 and obtain a DR layout satisfying the
assumption). Since the dimensions a,, bz, cz, d2, u and v satisfy the conditions
of the Remark, it follows that e, 3_(¢r§;—'+ Y B )/2. Thus if we can establish
DZ(S) > e, our analysis for Type (e) layouts will be complete. Refer to Fig. 5

for the dimensions and the equations for Dl(S) and Dz(s). We consider two

cases: (1) b2 > <, 2

Then bz > max(az, Cys dz), so b2 > max(az, b2 = X5 Cps dz) = D2(S). But

and (ii) b, < c (1) Given b

5 > ¢,, suppose b2 > max(az, dz).

D,(S) > b, and so D,(S) > D,(S), which is a contradiction. Thus max (a,, d,) > b,.

Since b2 > Cys max(az, dz) > ¢y, SO e, = nax(az, bz, Cyo dz) = nax(az, dz).
As Dz(s) z_nax(az, dz), DZ(S) :_ez. (11i) When b2 < Cys €y = lax(az. bz, Cys d2) =

nax(az, Cys dz). But clearly DZ(S) 3_max(a2. Cys dz). and so DZ(S) > e,.

This completes the analysis for m = 3.
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Proof. We know the claim is true for m

We summarize the foregoing analysis in

Lemma 2. Any layout S in C, is dominated by an ACS layout S* in C

3 3

We can now establish

Property 1. Given any layout S in Cm,
DSy > &0 H, + /B,
D(S) > (/B + /B)/2.

-

<i<ml.

2 and m = 3, due to Lemmas 1 and 2.
Thus assume the claim is true for m - 1 > 3. It then suffices to show the
claim is true for m. Given any layout S in Cm’ let us construct the layout 3

as follows. Take S, = S 1

i i’

A1=Ai,1iiim—2,Am_l=

1<1<m-2,§=‘z + eee 4+ A
s 2w m-

| A

i <m2, S =S U S . Likewise define
= m-1 m-1 m

+ A . Also let B, = A+ **+ + A

1 i 1 17

?>

. We then note that S is in C 5 S, has area
1 m-1’ "1

=B,1<i<m—2,and§=B. Now since S € C the
i R m-1

1

Ki,liiim—l,ﬁi

inductive assumption implies

p,(3) >/ B, +/ B)/2, 1z<iczw2.

Since S, = S B

i T for 1 <i <m-2, and B = B, we thus have

Sy

D, (S) > «/ B, ¢B Y2, 1 <4 cmd. (11)

Next, for the same given layout S in Cm let us construct the layout S as

follows. Take S, =S. uS,, S

1 1 2% 54 = Si+1’ for 2 < i < m1. Likewise define

Al = A1 + Az, Ai = Ai+1’ 2 <i <ml. Also let Bi = A1 + oo + Ai’ 1<i<m2,
B = Al + cee + Am—l' We then note that S iSin(%rl’ Si has area Ai for
l1<i<ml, Bi =B for 1 <i <ml, and B = B. Now since § ¢ Cm-l the

inductive assumption implies

b, &) >¢/ B, +/ B)/2, 1<1<m2

i
D1 ® 2 B, +/ B2




oo oats

Since S,., = 5, for 2 <i < m1, B.v1 = By for 2 <i <m1 and B = B, we
thus have
D1 (S > (Y Biyy + ¥ B )2, 251 <md
D(s) > (/B _, +YB)/2 (12)
so that
Di(s) > (¥ B, + FB Y2, 341 s<wl, (13)

Since m > 4, the conclusion now follows from (11), (12), and (13).
An immediate consequence of Property 1 is
Property 2. In order to find either a minimax or a minisum layout it suffices

to consider ACS layouts.

Minimax Problem Analysis

Given an ACS layout S with order [1], ..., [m], if h = [i] we say that
activity h is in position i in S. 1If, in addition, activity j is in position
i+l in S, and we construct the layout S from S by interchanging the positions

of activities h and j, we say we have constructed S from S by making an adjacent

Aase toie it o

interchange of activities h and j. Throughout the analysis for the minimax
problem we assume the activities are numbered so that fl &= f2 2 v > fm.
Lemma 3. Let S be an ACS layout such that for some j < k activities k and j

are in positions i and i+l respectively, for some i, 1 < i < m-2. If the lay-
out é is constructed by making an adjacent interchange of activities j and k,
then it is true that F(é) < F(S).

Proof. For § in Cm’ activities k and j in positions i and i+l respectively, and
Hlimlmﬁus%w)i%wlwmj<k,whweﬁ;fjmdw

[D,(8)] = Fj(S)-

F(8) = £,[D, ()] < £, [,

Fj(S) = max[Fk(S), Fj(s)]. (14)




Since activity j is in position i in S but in position i+l in S, and i+l < ml,

Dj(é) < Dy(8), o £,

j[Dj(S)] j_fj[Dj(S)] - F&(S)- (15)

Since activity k is in position i+l in S while activity j is in position

nondecreasing implies

Fj(S)t f

i+l in S, Dk(S) = Dj(S), so fk j_fj implies

F(S) = F (D (5)] < F,[D,(8)] = F,(S). (16)
From (14), and (15), and (16) we have
max[F, (), 7, ()] < max[F (5), F (5)]. a”

As all activities other than j and k have the same position in both S and S

we have

Fi(é) =B () , 1eM, 1}, KL (18)

From (17) and (18) we conclude F(S) < F(S).

Recall that S(p) is the ACS layout such that activity p surrounds all
other activities and, otherwise, activities surround one another, from the
center outward, in order of increasing index number.

Property 3. If S is an ACS layout with activity p in position m, then

F(S(p)) < F(S).

Proof. Given the layout S, let us fix the location of tﬁe activity p in position
m of S. Recalling f, > £, 2> ¢+ > £, let us then find that activity having a
smallest index among those in positions 1, ..., m-1, and make successive pair-
wise interchanges as needed until it is in position 1 in a layout, say S{1}.

Then let us find that activity in S{1} having a smallest index from among

those in positions 2, ..., m-1, and make successive pairwise interchanges as
needed until it is in position 2 in a layout, say S{2}. Continuing in this
manner we find that the activity in S{i-1} having a smallest index from among
those in positions i, ..., m-1l, and make successive pairwise interchanges as

needed until it is position i in a layout, say S{i}. When i = m-1 we stop.
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Due to Lemma 3, F(S{m-11})

|A

<« < F(3{1}) < F(S). Clearly S{m-1} = S(p) and
the conclusion follows.

Property 4. For any p, 1 <p <ml, if AIJ ;Am, the F(S(m)) < F(S(p)).
Proof. In layout S(p), we note that activity m is in position m-1. If we
construct the layout {:‘; from S(p) by interchanging the positions of activities

< A , that
p~= m

p and m in S(p), it is direct to verify, because A
D,(5) D (S) <D (S(p)) = D (S(p). (19)

Since the positions of all other activities remain unchanged, we have
D,(S) <D(S(P), 1ieM, 1¢({p,mh (20)

From (19) and (20) we conclude F(é) < F(S(p)). Since activity m is in
position m in é, Property 3 implies F(S(m)) < F(é). Because F(é) < F(s(p)),
we have F(S(m)) < F(S(p)).

We now have
Property 5. The minimax algorithm constructs a minimax layout.
Proof: By Property 2, to find a minimax layout it suffices to consider only
ACS layouts. Property 3 then implies it suffices to consider only the layouts

S(1), «e., S(m). Now if Am— > Am it is easily established that F(S(m-1)) <F(S(m)).

1

If A, <A, Property 4 gives F(S(m)) < F(S(m-1)). Thus, with reference

1
to step (2) of the algorithm, F(S(0)) = min{F(S(m-1)), F(S(m))}. By Property 4,
if Ak iAm for 1 < k < m2, then F(S(m)) < F(S(k)) and so F(S(0) < F(S(m)) < F(S(k)). #

Thus it suffices to consider only S(o) together with those layouts S(p) in

{s(1), ..., S(m-2)} for which Ap > Am in order to find a minimax layout.

Minisum Problem Analysis

The following property is the key to the minisum problem analysis.
Property 6. Suppose S is an ACS layout in Cm having activities j and k in

positions p and q respectively, where p < q. If Ak < Aj, fk - fj is a nonde-




creasing function, and we construct the layout é and S by interchanging the
position of activities j and k, then G(é) < G(S).

Proof. We first consider the case where q < m.. Denote by I,, I,, and I, the
collections of indices of activities in positions 1 through p-1 in S, p+l
through q-1 in S, and q+l1 through m in S. Note q < m implies I3 # ¢. S and

; may be conveniently depicted (with positions from the inside to the outside

represented by positions from left to right) as follows:

pos. p pPos. q

Because the positions of activities in I. remain unchanged,

1

Di(é) ~D(S), el (21)

1
Because Ak < Aj’ and activity k is in position p in S while activity j is in
position p in S,

D (5) < D,(8). (22)

Because A, < A and activities in I, retain the same positions,

3

Di(S) 5-”1(5)’ ie Iz. (23)
Because activities j and k are in position q in S and S respectiveiy,

Dj(s) = D, (S). (24)
Since the positions of activities in I3 remain unchanged,

Di(s) = Di(S), ie 13. (25)

Since p < q < m,

D,(5) < D,(5), (26)
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: Property 7. 1If S* is an ACS layout in order 1, 2, ..., m for which f

so, since fk - fj is a nondecreasing function,

£(D,(9)) - £,[D ()] < £, [D ()] - £, (D (5)].
or
fj[Dk(s)) + fk[Dj(S)] :_fj(Dj(S)] + fk[Dk(S)]'
Now (24) and fj nondecreasing implies
£,(0,(8)] < £, (0, ()],
3 while (22) and fk nondecreasing implies
fk[Dk(S)] < fk[Dj (s)].

Thus the latter three inequalities imply

Fy(S) + F(S) < Fy(S) + Fy(S). ¢3))

From (21), (23), and (25) we have
TR t el Ul v} <] {F(S) : eI ul, v 1,} (28
The addition of (27) and (28) gives G(é) < G(S).

For the remaining case where q = m, 13 = ¢. Upon setting 13 = ¢, changing

(24) to Dj(é) i_Dk(S), and changing (26) to DJ(S) < Dk(S), the analysis goes

through exactly as before.
The repeated use of Property 6, together with Property 2, gives

i1~

is a nondecreasing function for 1 < i < m-1, and A A0 121 w1, then

S* solves the minisum problem.
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